ЛІ. Множество вещественных чисел. Декартовы прямоугольные координаты на прямой, плоскости и в пространстве. Полярные координаты Комплексные числа. Формы представления комплексные числа.

1. Множества.

Определение. Мю нес твом называется совокупность, собрание каких-либо объектов произвольной природы Объекты, входящие в данное мно жество, будем называть элемен тами мно жества.

Запись $a \in A$ означает, что объект a есть элемент множества A (принадлежит множеству A); в противном случае пишут $a \notin A$ (или $a \in A$). Множество, не содержа щее ни одного элемента, называется *пус тым* и обозначается символом \Box Запись $A \subset B$ (A содержится в B) означает, что каждый элемент множества A является элементом множества B в этом случае множество A называется *подмно жес твом* множества B. Множества A и B называются *равными* (A = B), если $A \subset B$ и $B \subset A$, другими словами, множества считаются равными, если они состоят из одних и тех же элементов.

Су ществуют два основных способа задания (описания) мно жеств. а) мно жество A определяется непосредственным перечислением всех своих элементов $a_1, a_2, ..., a_n$ т.е. записывается в виде:

б) Мно жество A определяется как совокупность тех и только тех элементов из некоторого основного мно жества T, которые облада юг общим свойством α В этом случае используется обозначение:

Мно жества, элементы которых являются числами, называются числовыми. Приведём основные примеры числовых мно жеств.

Мно жество натуральных чисел обозначается через N, $N = \{1,2,3,...\}$.

Во множестве N действуют операции сложения и умножения.

Мно жество целых чисел обозначается через Z:

$$Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}.$$

Во мно жестве Z действуют операции сложения, вычитания и умно жения. Мно жество рациональных чисел обозначается через Q ,

$$Q = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \right\}.$$

В мно жестве Q действуют все четыре арифметические операции. Множество всех действительных чисел — как рациональных, так и иррациональных, обозначается через R. В нём выполняются все арифметические действия и извлекаются корни любой степени из неотрицательных чисел

Эти мно жества явля ются подмно жествами друг друга в следующем порядке:

$$N \subset Z \subset Q \subset R$$
.

- **2** Символика математической логики. Для сокращения записи в дальнейшем будем употреблять некоторые основные *погические символы*, или *кван торы*. Пусть α и β некоторые предложения.
 - 1) Запись $\alpha \Rightarrow \beta$ означает: "из α следует β ", " \square " символ импликации
- 2) Запись $\alpha \Leftrightarrow \beta$ означает " α и β эквивалентны", т.е. чго, из $\alpha \Rightarrow \beta$ и из $\beta \Rightarrow \alpha$. " \square "— символ эквивалентности

Любую теоре му в мате матике можно записать в виде $\alpha \Rightarrow \beta$ или в виде $\alpha \Leftrightarrow \beta$, α -условия теоре мы, а β – её утвер ждение.

- 3) Знак " \forall " означает: "каждый, любой, для каждого" и т. д. \forall квантор общности На пример, $\forall x \in X$ $\alpha(x)$ означает: "для всякого элемента $x \in X$ истинно утверждение $\alpha(x)$ ".
- 4) Знак " \exists " означает "существует, найдется, имеется". " \exists " квантор существования. \exists -перевернутая E начальная буква слова "Exi st enz" "существует". Например, $\exists x \in X \ \alpha(x)$ означает: существует элемент $x \in X$ такой, что для него истинно утверждение $\alpha(x)$. Если элемент x из X для которого истинно утверждение $\alpha(x)$, не только существует, но и единствен, то пишут: $\exists x \in X \ \alpha(x)$.
 - 5) Знак ": " означает: "такой, что" или "такие, что", специального названия он не имеет.
- 6) Знак " \neg " или $\overline{\alpha}$ означает отрицание утверждения α , " \neg " символ отрицания. Часто при доказательстве теорем используется метод "от противного", который использует равносильность предложений ($\alpha \Rightarrow \beta$) и ($\beta \Rightarrow \alpha$).
 - 7) Запись $\alpha \wedge \beta$ означает " α и β " (" \wedge " символ конъюнкции).
 - 8) Запись $\alpha \vee \beta$ означает " α или β " (" \vee " символ дизъюнкции).
- **3.** Огрезок, интервал, ограниченное мно жество. Введём следующие обозначения для подмно жеств в R.

Мно жество чисел $x \in R$, удовлетворя ющих неравенствам $a \le x \le b$, называется **о трез ком** (с концами a,b) или сегментом и обозначается так:

$$[a,b]$$
, the $[a,b] = \{x \in R : a \le x \le b\}$.

Мно жество чисел $x \in R$, удовлетворя ющих неравенству a < x < b, называется **ин тервалом** (с концами a,b) или открытом отрезком и обозначается так (a, b), т. е (a, b) = { $x \in R: a < x < b$ }.

Мно жество чисел $x \in R$, удовлетворяющих неравенствам а $a \le x < b$ или $a < x \le b$, обозначаются соответственно [a,b),(a,b] и называются полуоткрытыми отрезками или **полуин тервалами**. Первый, например, закрыт слева и открыт справа.

Отрезки, интервалы и полуинтервалы называются **числовыми проме жу тками** или просто проме жу тками.

Произвольный интервал (а, b), содержащий точку x_0 мы будем называть *окрес тьос ть ю точки* x_0 . В частности, интервал $(x_0 - \mathcal{E}, x_0 + \mathcal{E})$ $(\mathcal{E} > 0)$ называ ют \mathcal{E} - *окрестнос ть ю* точки x_0 : $U_{\mathcal{E}}(x_0) = (x_0 - \mathcal{E}, x_0 + \mathcal{E})$.

Часто рассматрива юг мно жества, называемые бесконечными интервалами или полуинтервалами:

1)
$$(-\infty, +\infty)$$
, 2) $(-\infty, a]$, 3) $(-\infty, a)$, 4) $(a, +\infty)$, 5) $[a, +\infty)$.

Первые их них есть множество всех действительных чисел (действительная прямая), остальные состоят их всех чисел, для которых соответственно:

2)
$$x \le a$$
, 3) $x < a$, 4) $a < x$, 5) $a \le x$.

Если a и b конечны и a < b, то число b - a называется длиной сегмента [a,b] или интервала (a,b), или полуинтервала (a,b], [a,b).

Пусть X есть произвольное множество действительных чисел.

Говорят, что мно жество X *франичено сверху*, если \exists (действительное), число M такое, что $\forall x \in X : x \leq M$.

Ое раничено сниву, если \exists число m такое, что $\forall x \in X : x \geq m$.

О раничено, если оно ограничено как сверху, так и снизу. В противном случае, оно называется неограниченным

Ясно, что множество X ограничено, если $\exists\, M>0: \forall\, x\in X\Longrightarrow \left|x\right|\leq M$, так как

 $(|x| \le M) \Leftrightarrow (-M \le x \le M)$.

Неограниченное мно жество X можно определить так мно жество X неограниченно $\Leftrightarrow \forall M>0, \exists x_0 \in X: |x_0|>M$.

Пример. [a,b] – ограниченное мно жество (a,b) – ограничено, если a и b конечны, и не ограничено, если $(-\infty \le a), (b \le \infty)$.

Де картова систе ма координат.

Декартовой системой координат в пространстве называется совокупность точки и базиса.

Точка называется началом координат, прямые, проходящие через начало координат в направлении базисных векторов, называются осями координат.

Баз ис называется ортонормированным если его векторы попарно ортогональны и по длине равны единице.

Декартова система координат, базис которого ортонормирован, называется декартовой пря моугольной системой координат.

Полярная система координат.

Полярная система координат определяется точкой Q называемой полюсом, и исходящей из полюса лучом, который называется полярной осью

Положение точки фиксируется его радиус-вектором и углом между полярной осью и радиус-вектором Полученный угол называется полярным углом

Декартовы координаты точки выражаются через полярные координаты так:

Комплексные числа. Формы представления комплексные числа.

Определение комплексного числа:

где:

х —ве щественная часть,

у — мнимая часть,

Обозначим действительную и мнимую части комплексного числа следующим образом

Формы представления комплексных чисел

1. Алгебраическая форма

2. Тригонометрическая форма

Любое ненулевое комплексное число можно записать через модуль и аргумент:

3. Показательная форма (экспоненциальная форма, форма Эйлера) Используя формулу Эйлера:

мы получаем

- Алгебраическая форма —удобна для сложения и вычитания.
- Тригонометрическая и показательная формы —удобны для умножения, деления и возведения в степень.

Комплексное Число Z = 3 + 4i И Его Представления

